|
4 years ago | |
---|---|---|
.. | ||
data | 4 years ago | |
models | 4 years ago | |
notebooks | 4 years ago | |
reports | 4 years ago | |
src | 4 years ago | |
.gitignore | 4 years ago | |
LICENSE | 4 years ago | |
Makefile | 4 years ago | |
README.md | 4 years ago | |
env.yaml | 4 years ago | |
test_environment.py | 4 years ago |
A deployable reference solution for DAIR participants to observe and study application of machine learning techniques in time-series predictions. This solution builds an energy load predictor.
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make model`
├── README.md <- The top-level README for developers using this project.
│
├── data
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── env.yaml <- File to re-create development environment.
│
├── models <- Trained models and model predictions
│
├── notebooks <- Jupyter notebooks.
│
├── reports
│ └── figures <- Generated graphics and figures to be used in reporting
│
└── src <- Source code for use in this project.
├── __init__.py <- Makes src a Python module
│
├── data <- Scripts to download or generate data
│ └── make_dataset.py
│
├── features <- Scripts to turn raw data into features for modeling
│ └── build_features.py
│ └── select_features.py
│
├── models <- Scripts to train models and then use trained models to make
│ │ predictions
│ ├── predict_model.py
│ └── train_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations
└── visualize.py
Project based on the cookiecutter data science project template. #cookiecutterdatascience